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The response of closed square and cubical cavities to linear standing waves of second sound in helium n has 
been studied. In a square cavity, when the number of half-wavelengths n along one side is even, a linear wave 
in the x direction couples loosely with the y direction, producing standing waves in both directions at two 
resonant frequencies, in a narrow doublet. The theory of the coupled waves is analogous to that for coupled 
LC electric circuits. When n is odd, a linear wave does not couple with the perpendicular directions. How
ever, owing to quadratic terms in the thermohydrodynamic equations, a small-amplitude wave at twice the 
frequency of the standing wave is generated, and this wave is present along both the x and y axes. A theory 
of these phenomena is presented, along with frequency, amplitude, phase, and Q measurements. The results 
are similar in cubical cavities, but the number of available coupled-wave modes is reduced by cancellation of 
waves, due to the symmetry of the cavity. 

I. INTRODUCTION 

SECOND sound1 in helium n is wave motion in 
which the normal fluid component and superfluid 

component oscillate out of phase, the total density 
of the liquid remaining very nearly constant. Since the 
entropy of the liquid resides in the excitations which 
comprise the normal fluid component, an increase in 
normal fluid density pn corresponds to an increase in 
temperature T. T in second sound is therefore analogous 
to pressure in ordinary sound in a gas. 

If quadratic terms and terms involving viscosity rj 
are dropped from the thermohydrodynamic equations 
for helium n, and if pressure gradients and body forces 
are set equal to zero, the following differential equations 
obtain: 

d2F/dt2=u2V2F (la) 
or 

d 2 F / ^ 2 = ^ v ( V - F ) , (lb) 

where u is the velocity of second sound and F or F is 
any one of the variables T\ S', pn', p / , vn, vs, r», and 
r8. These are the fluctuating parts of the temperature T, 
entropy S, normal fluid density pn, and superfluid 
density p&; and the normal and superfluid velocities v 
and displacements r. In a rectangular closed cavity 
with origin at one corner and sides of lengths a, b, and c 
in the x, y, and z directions, the standing wave solution 
of Eq. (la) for V is2 

exp(iconmpt) 
n m p 

flTC MIT pTT 
X cos—x cos—y cos—z, (2) 

a b c 

where Vnmv are the amplitudes, and n, tn, and p are 
integer numbers of half-wavelengths along the sides. 
The cosine functions are chosen to satisfy the boundary 
conditions at the walls; sine functions are used for the 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 K. R. Atkins, Liquid Helium (Cambridge University Press, 
Cambridge, England, 1959), Chap. 5. 

2 J. W. Strutt (Baron Rayleigh), Theory of Sound (Dover 
Publications, Inc., New York, 1945), 2nd ed., Vol. II, p. 70. 

A 

velocity waves. The frequencies o)nmP are discrete and 
are given by 

~/n\2 fm\2 /A2~l1/2 

. G H T M - J ] • (3) 

We designate standing waves in one direction as linear 
modes, and waves involving two or three directions as 
compound modes. When a cavity is excited by a heater 
at a single frequency, the triple sum in Eq. (2) is reduced 
to a single term, except for degenerate modes. 

We have found it informative to study linear standing 
wave resonances of second sound in closed rectangular 
cavities having two or three sides equal in length. 
Because of the terms omitted in deriving Eqs. (la) and 
(lb), the solution above does not describe the observa
tions. Before giving a more complete theory, we wish to 
state the differences between the experimental results 
and the predictions of the above simple theory, for a 
cavity with a—b^c. 

(1) When n is even, a linear mode in the x direction 
will couple loosely with the y direction. We then have 
standing waves in both directions, at two resonant 
frequencies, separated by a small frequency difference 
2Aco. At con+Aw, the x and y waves are in phase, while 
at o)n— Ace, the phases differ by w. We wish to emphasize 
that these resonances do not constitute compound 
modes, for the x and y waves have different amplitudes, 
and the resonances occur at can rather than V2a>n. 

(2) When n is odd, a linear mode in the x direction 
of frequency wn does not couple with the y direction, 
and a single large resonance is observed. However, due 
to quadratic terms in the thermohydrodynamic equa
tions, the wave of frequency oon is always accompanied 
by a small-amplitude wave of frequency 2co„. For this 
wave the number of half-wavelengths is even, and the 
2con wave does couple with the y direction. At resonance, 
a small-amplitude wave of frequency 2cow is observed in 
both the x and y directions, giving direct experimental 
evidence of the quadratic terms in the thermohydro
dynamic equations. 

The next four sections are devoted to a theory of 
resonances in square cavities. These are followed by a 

918 



S E C O N D S O U N D I N S Q U A R E A N D C U B I C A L C A V I T I E S A919 

description of our apparatus, and the experimental 
results for square cavities. The last section discusses the 
extension of the theory to cubical cavities, and the 
results for cubical cavities. 

II. THERMOHYDRODYNAMIC EQUATIONS 

London3 gives the following equations for helium n , 
intended to be correct through quadratic terms: 

= - Vp/p+ SV T~ V0+p»V | v n - v. | V2p, (4) 

where p is the pressure, S is the entropy per g, p the 
total fluid density, and v the potential function for the 
gravity force. 

d\n/dt+(\n-V)yn 

= —Vp/p-psSvT/pn—V<t>—psV\Yn—vs\
2/2p 

— T(vn—\s)/pn — 1)VXVXVn/pn 

+ (2l?+1?
/)V(V-Vn)/p». (5) 

r is the conversion rate of superfluid to normal fluid, 
and rj and v[ are the first and second coefficients of 
viscosity. The continuity equations are dp/dt-\-V -pv 
= 0; dpS/dt+V'pS\n=0; dpn/dt+V-pnVn=T; and 
dp8/dt+V-p8\8=—Tii where v is the velocity of the 
total fluid. If r = 0 and the fluid is considered to be 
incompressible, then pwvn= — psvs. 

We use these equations in two ways. First, we derive 
a wave equation including attenuation by viscosity, 
but omitting the quadratic terms in Eqs. (4) and (5). 
Second, we calculate the amplitude of the wave of 
frequency 2con generated in the liquid by a driven wave 
of frequency «„. The wave equation for yn including 
viscosity is 

d2\n T ? + v[ d rj d 
=^ 2 V(V-v n )+ V(V-v n )+ V2vn. (6) 

dt2 Pn dt pn dt 

The wave equation Eq. (lb) is seen to include only the 
first term on the right. The only solution of Eq. (6) 
which has frequency con given by Eq. (3), with m and p 
equal to zero, is a plane wave. However, we know the 
tangential velocity of vn along the walls at the sides of 
the plane wave is zero, due to viscosity. One way out of 
this dilemma is a hydrodynamic model in which the 
plane wave is separated from the side walls by a thin 
boundary layer, in which there are large temperature 
and velocity gradients. 

The justification for assuming a distinct boundary 
layer is a large Reynolds number NR, which we take to 
be Vnpr^/fy, where X is the wavelength of second sound 
waves. We have used A/4 for the characteristic length 
because it is the largest distance normal fluid can be 
displaced from equilibrium by a large amplitude wave. 
In the cavity, NR is a function of x and t. Average values 
of NR for our experiments, were of the order of 104. 

3 F. London, Superfluids (John Wiley & Sons, Inc., New York, 
1954), Vol. II, pp. 130-132. 

TABLE I. Liquid-helium analogs for a second sound wave 
of transmission line properties. 

Transmission line property Liquid-helium analog 

Distance along line, x 
Voltage, V(x) 
Current, i(x) 
Capacitance per cm, C 
Inductance per cm, L 
Wave velocity, u 
Characteristic impedance Z& 

Distance from heater, x 
Temperature fluctuation, T'(x) 
Heat current, pSTyn(x)Aa' 
Heat capacity per cm, pA Cp

a 

(pACpU*)-1 

Sound velocity, u 
*>(pACpu)-1* 

* S is the entropy per g, CP is the heat capacity per g, and A is the cross-
sectional area of the cavity. 

b (pACpu)~l neglects dissipative terms. 

The thickness 8 of the boundary layer is approximately 
equal to C(\rj/4:Vnpn)112, where C is a numerical factor 
given by various authors as 3.4, 4.8, and 5.5.4 Through 
the factor X1/2, 8 is proportional to or112. In our experi
ments, with a>/27r= 103, 8 was approximately 0.3 mm, 
which is less than 1% of the width of the cavity. 

III. THE COUPLING CONSTANT K 

Consider a driven linear standing wave in the x 
direction. The transfer of energy from this wave to a 
wave in the y direction is proportional to K2, where K 
is the "coupling constant." K is zero unless the linear 
modes are degenerate, i.e., unless the cavity is square. 
Since energy is transferred to the y direction from both 
side walls y= 0 and y= a, K is also zero if the number of 
half-wavelengths n is odd, for then the waves generated 
at the two side walls exactly cancel. 

A cavity excited in a linear mode is analogous to an 
electric transmission line,5 and we use transmission line 
theory to show how a linear mode is driven. Table I 
lists the liquid-helium analogs of transmission line 
properties. Experimentally, the wall of the cavity at 
x=0 is a heater, whose temperature varies as eia>t. 

When a driving emf = &&iat is applied at the end of 
an infinitely long transmission line, whose characteristic 
impedance is Zk, the current along the line is given by6 

i (x,t) = (<§o/ZA;)"exp £—ico (x/u—t)—ax~], (7) 

u is the wave velocity, a is an attenuation coefficient, 
and the vector quantities are complex numbers. 

If we now terminate the line at x^nX/2; if the 
reflection coefficients at both ends equal — 1; if co equals 
the resonant frequency o)n; and if a is small, then 

i(x,t)= (So/Zk) exp(io)J—ax) 
XlQe~iTl2 sin(o)nx/u)+ (l-x/a)eio>nxlu'], (8) 

where Q= Vo/80 and Vo is the amplitude of the voltage 
4 L. Prandtl and O. G. Tietjens, Applied Hydro- and Aero

mechanics (Dover Publications, Inc., New York, 1957), p. 67; 
H. L. Dry den, F. D. Murnaghan, and H. Bateman, Hydrody
namics (Dover Publications, Inc., New York, 1956), p. 349; L. 
M. Milne-Thomson, Theoretical Hydrodynamics (The Macmillan 
Company, New York, 1955), 3rd ed., p. 569. 

B See Ref. 1, pp. 141-142. 
6 L. Page and N. I. Adams, Principles of Electricity (D. Van 

Nostrand Company, Inc., New York, 1949), 2nd ed., pp. 533-544. 
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standing wave. The first term is the large resonating 
current, and the second term, equal at # = 0 to the 
current going into an infinitely long line, supplies the 
energy dissipated by the resonating current. The power 
input P to both lines is the same, 

F=(So2/Zk)exp(i2a)nt). (9) 

Equations (7), (8), and (9) also apply to linear second 
sound waves if the analogs in Table I are substituted. 
We rewrite Eq. (9) for an uncoupled second sound 
wave, 

PJ = acpCpU Th
2 exp (i2co J), (10) 

where ac is the area of the heater and T% is the amplitude 
of the temperature oscillations of the heater. The 
resulting second sound temperature standing wave is 

V(x,t) = TJ cos(o)nx/u) exp ( iu j ) , (11) 

where TJ is the amplitude of the wave. The side walls at 
3/=0 and y=a are not heaters, and remain at the 
equilibrium temperature T0. The wave in the y direction 
is driven by the temperature difference — T'(x,t) 
across the boundary layers at y=0 and y— a [ the 
Jla T'2{xf)dx is a positive quanti ty]. The power input 
to the y wave is 

Py= acpCpu(KTj)2 exp (iluj). (12) 

Equation (12) serves as a definition of K. The wave in 
the y direction transfers energy back into the x wave, 
giving, for the power input to the coupled x wave, 

Px = acpCvu{Th
2+ (KTJY 

+2KThTy' COST] exp(i2o> J), (13) 

where y is the phase angle between Th and TJ. 
Setting 7 = 0 , the Q's of the coupled linear modes are 

Qx=Tj/(Th+KTj-KTj) a n d Q y ^ T j / ( K T j - K T j ) . 
If we assume Qx=Qv=zQ, TJ can be eliminated from 
these relations, giving 

Tj/Th=Q(l+KQ)/(l+2KQ). (14) 

If K goes to zero, Eq. (14) reduces to Q= TJ/Th, which 
is the relation for an uncoupled x wave. Experimentally, 
we find KQ is apparently independent of frequency, 
and we set KQ—N. For our square cavity, | N \ ~ 5, and 
in this instance, and for larger values of N, Tj/Th~Q/2. 

IV. THE DOUBLE RESONANCES IN A 
SQUARE CAVITY 

We write the wave equation Eq. (6) for plane waves 
in the x and y directions as follows: 

d2vx /u\2d d2vx d2vx 

B[ — ) u2 - 0 , (15) 
dt2 \a)n' dt dx2 dx2 

d2Vy /U\2d dHy 82Vy 
. B[—) u2 = 0 , (16) 
dt2 Von/ dt dy2 dy2 

where vx and vy are scalar normal fluid velocities, and 
B=o)n

2(27]-j~r}f)/u2pn' The solutions of Eqs, (15) and 

(16), which satisfy the boundary conditions, are 
vx—sin(oinx/u) Fx(t) and vy=sin(o)ny/u) Fy(f). The 
equations for Fx and Fy are 

d2Fx/dt2+BdFx/dt+a>n
2Fx= 0 , (17) 

d2Fy/dt2+BdFy/dt+a>n
2Fy= 0. (18) 

We are interested in solutions Fx and Fy when the waves 
are coupled. We therefore add Kd2Fy/dt2 and Kd2Fx/dt2 

to the right sides of Eqs. (17) and (18), respectively.7 

The coupled equations lead to the following equation 
iorFx: 

(1-K2)D*FX+2BD*FX+ (B2+2a>n
2)D2Fx 

+2Ba>n
2DFx+a>n*Fx= 0 , (19) 

where D stands for d/dt. We let Fx=vxoei<ate~^y where 
vx0 is the amplitude of the wave at t—0. We drop all 
terms in 02, pB, and B2, as being second order. The 
equation for co then is 

( l - Z " V - 2 c o w V + c o n
4 = 0 . (20) 

This has two solutions, coi=con(l+i^)~1/2 and co2 

= con(l—K)~112. The frequency difference is C02—-on 
= 2Aa)~Ka)n- The frequencies coi and a>2 are the natural 
frequencies of the undriven, but coupled, perpendicular 
modes. They are also very nearly equal to the resonant 
frequencies when the x wave is driven. At frequencies 
near o)ni the functions Fz and Fy are analogs of the 
currents in coupled resonant LC circuits. The exact 
resonant frequencies and phases, and the behavior of 
Fx and Fy near to and between the resonances, can be 
obtained from detailed analysis of coupled LC circuits.8 

When n is odd, and the linear x wave is not coupled, 
P=B/2, and Q=oon/2fi. When the waves are coupled, 0 
is obtained from Eq. (19), and is a function of a>: 

0 = ( JB/2)[l+iTV/(cow
2-co2)]-1 . (21) 

For the uncoupled wave, Q=con/5co, where 8u is the 
width of the resonance at v2/2 of the maximum am
plitude. Because of the frequency dependence of /3, we 
have not applied this relation when the modes are 
coupled. 

V. GENERATING THE DOUBLE-FREQUENCY WAVE 

A linear standing second sound wave of frequency w 
is always accompanied by a small-amplitude wave of 
frequency 2a>, generated in the liquid by the quadratic 
terms in the thermohydrodynamic equations, Eqs. (4) 
and (5). In Eqs. (4) and (5), we write T, S, pn, and ps 

as the sum of the equilibrium values (subscript zero) 
and the oscillating parts (superscript prime). Through
out the derivation, the order of a term equals the 
number of factors which are primed, multiplied by the 
number of factors vn or v.,. Third-order terms are 
dropped. We also drop from Eqs. (4) and (5) the terms 

7 We assume the K introduced here is defined by Eq. (12). The 
identity has not been proven in detail. 

8 See Ref. 6, pp. 499-517. 
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including Vp, V<£, and F. Since we work at sufficiently 
low temperature so that Ps2>pn, we assume vn^>vs. 
Equation (5) then reduces to 

d\n/dt= —psoSoVT'/pnO — psoS'VT'/pnQ 

— Ps'SoVT'/pnQ— VVn2 — Pn(d\n/dt)/pn0 

- T?VX VX vn/pno+4r/V(V- vn) /3pn 0 , (22) 

where, for simplicity, we have used the Stokes relation 
r]'——2r]/3. We seek plane-wave solutions in the x di
rection. Using the thermodynamic relation for constant 
pressure TdS = CpdT, and the continuity equation for 
pS with p constant, we obtain 

er r0r 
(23) 

dT Tof • 
= \So-

dt C± 

dvn dvn dS'~] 
+S'—+vn— , 

dx dx dx J 

where vn is the scalar value of vn. 
Differentiating Eq. (22) with respect to time, sub

stituting Eq. (23), using the continuity equations, and 
making several approximations, we obtain 

d2vn dvn f d2vn 
3u2— / dt 

dx J dx2 

d2vn f dvn f dhn 
2u2 / —dt—u2vn J dt 

dx2 J dx J dxz 

d2vn 
= u2 

dt2 dx2 

d2vn
2 dvn dvn 4T; d/d2vn\ 
+ + , (24) 

dxdt dx dt 3pnodt\dx2/ 

where u2= (ps/pn)So2To/Cp, and we have dropped a 
term of order pw/ps<^l. We now substitute 

Vn — Fuii) sma)x/u-\-F2o)(i) sm2<ax/u (25) 

for the linear terms in Eq. (24), and vn~Fw(t) sincox/w 
for the quadratic terms. This approximation artificially 
eliminates waves of higher frequency than 2co. We have 
removed the space dependence from Eq. (24), which 
now yields two equations, 

d2F„/dt2+ (^o>2/3pn*u2)dFu/dt+o>2F<a=Q y (26) 

and 

d2F2„/dt2+(167iu2/3pnoU2)dF2o>/dt+4u2F2o} 

~(3^/u)F0} / Fjt-{u/2u)FjFjdt 

+ (u/u)dFJ/dt=0. (27) 

If we add to the right side of Eq. (26) a driving term, 
representing the power supplied by the heater, we can 
set F0}=v0}expio)t and F2(a=v2(a expi2a>t, where vw and 
v2(a are the steady-state amplitudes of the driven wave 
and the double-frequency wave, respectively. From 
Eq. (26) we obtain an expression for the Q of the cavity, 
for an uncoupled x wave, 

Q= (3pnOU2/4:71Un) . (28) 

From Eq. (27) we obtain a relation between v2o) and vu, 

v2(a=v(
2(9Q/16u) . (29) 

In a second sound wave, vn is related to Tf by 
Vn—psoSoT'/pnou.5 Making this substitution, we find 
the amplitudes of the temperature waves are related by 

T'2„=(Tj)2(9psoSoQ/16pnoU2). (30) 

Anticipating the experimental results, Eq. (30) was 
found to be approximately correct if experimental 
values of Q are used. However, the experimental Q's 
are about 10~4 as large as calculated from Eq. (28). 
From this we conclude that normal fluid viscosity is 
not the major source of dissipation in a second sound 
cavity. A larger source of dissipation may be exchange 
of thermal energy with the walls, which are not perfect 
insulators, or may be mutual friction between the 
normal and superfluid components. 

VI. EXPERIMENTAL APPARATUS 

The square second sound cavity that we used was 
3.99 cm on a side, and 2.38 cm high (inside dimensions). 
The distances between walls in the x and y directions 
differed by not more than 0.005 cm, corresponding to a 
difference in resonant frequencies of 1.25 cps at 103 cps. 
The four walls at x = 0 , x=a, y=0, and y—a were 
500-fi/sq carbon resistance strips, with 1-mm-wide 
conducting strips painted along the top and bottom 
edges. The top and bottom of the cavity were closed 
with flat micarta surfaces. The cubical cavities we 
used were of similar construction, and their dimensions 
are given in Sec. IX. 

The # = 0 wall of the cavity was the heater and was 
connected by miniature coaxial cable to an audio sine-
wave oscillator, which supplied 10 to 40 V, peak-to-
peak. Three other walls of the cavity served as detectors 
of temperature oscillations, through their thermal 
coefficient of electrical resistance. The detector of the 
x wave in the square cavity had a resistance of 47012 at 
1.47°K, and a temperature coefficient of —63 Q/°K. 
I t will be noted that the heater generated temperature 
oscillations, at double the frequency of the * audio 
oscillator, uniformly and in phase over an entire wall. 
Therefore, cavity modes which require the temperature 
oscillations to vary across the heater wall were not 
generated. 

During measurements, the cavity was completely 
submerged in a bath of helium 11. Helium in the cavity 
communicated with the bath through 2-mm-diam 
holes provided at the corners. The temperature was 
determined from the vapor pressure of the bath, 
measured with an oil manometer. The high thermal 
conductivity of superfluid helium assured that the 
temperature inside the cavity was close to that of the 
bath. Measurements were made between 1.45 and 
1.5°K. 

The signal from the audio oscillator also went to a 
frequency counter and a frequency doubling circuit. 
The latter was used to drive the horizontal sweep of an 
oscilloscope while phase measurements were made, 
using Lissajous patterns. An electrical drive was 
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TABLE II . Square cavity resonances. 

#-wave #-wave Width at 0.71 Frequency width Cavity Q, #-wave detector 
Number of resonant doublet maximum for phase change calculated thermal 

wavelengths frequencies at separation amplitude 37r/4 to 57r/4 from amplitude for 
along a side 1.48°K (cps) 2Aw (cps) (cps) (cps) <?=co„/5wa FA = 2 0 V (°K) 

1/2 
1 

3/2 
2 

5/2 
3 

7/2 
4 

9/2 
5 

je 

3d averageb 

262.4 

499.6 
512.4 

754.0 

987.4 
1003.2 

1262.8 

1490.6 
1507.2 

1756.2 

1985.0 
1998.2 

2246.6 

2473.0 
2490.0 

250.5 

12.8 

15.8 

16.4 

13.2 

17.0 

15.0 

4.0 

4.0 

3.2 

1.0 

1.2 

2.7 

5.6 

3.4 

3.6 

1.2 

1.2 

3.0 

66 

189 

395 

1756 

1872 

1.6X10"3 

1.6 

1.3 

0.7 

0.6 

3.8 
1.0 

4.4 

2.2 
1.3 

4.1 

2.9 

a 5o> is the width at 0.71 maximum amplitude. 
b Each frequency is divided by the number of half-wavelengths before averaging. The frequency for ^-wavelength is omitted from the reduced average. 

connected to the oscillator frequency control, so that 
frequencies could be swept at slow speeds, in order to 
plot the shape of resonances. 

The resistance-strip detectors were biased with 0.5 
mA dc, and the ac signals from them were amplified 104 

times. The amplified signals at resonance were of the 
order of 1 V, while noise and pickup were 0.05 V or less. 
Signals from the x and y detectors were displayed 
simultaneously on a dual trace oscilloscope, and were 
also rectified, and plotted by a two-pen chart recorder. 

VII. RESONANT FREQUENCIES AND AMPLITUDES 

The frequencies and widths of the square cavity 
resonances are tabulated in Table I I . When the number 
of half-wavelengths n is even, the resonances are 
doublets, on both the x and y detectors. Since the height 
of the cavity in the z direction was incommensurate 
with the (equal) sides in the x and y directions, waves 
in the z direction were not excited at the frequencies in 
Table I I . If each single-resonance frequency, or 
doublet midpoint, is divided by n, the quotients are the 
same within experimental error, except for n= 1, which 
is 4.7% high. We believe this indicates a small phase 
shift occurs at the reflecting walls of the cavity. Using 
the average of the above quotients (omitting n—1) to 
calculate the velocity of second sound gives 20.0 m/sec 
at 1.48°K, in good agreement with other measurements.9 

The Q of the cavity is given by the resonant frequency 
o)n divided by the difference of the frequencies corre-

9 J. R. Pellam, Phys. Rev. 75, 1183 (1949); R. D. Mauer and 
M. A. Herlin, ibid. 76, 948 (1949). 

sponding to V2/2 of the maximum amplitude. The 
theory of resonant systems also tells us that the phase 
of an oscillating system, relative to the driving force, 
should change by T / 2 between those two frequencies. 
We have used both amplitude and phase change to 
determine the width of the resonances when n is odd. 
The reason for the marked reduction in 8co for 7/2 and 
9/2 wavelengths is not known. 

The widths of the doublets 2Ao> show no trend with 
frequency. From the relations N=KQ, 2Aco=Kccn, 
and Q=(tin/8o>, we obtain 2Aa)=N8a>. From the average 
values given in Table I I , we see N~5 in the square 
cavity. 

I t was found that when the heater covered an entire 
wall, it would not generate compound modes in the 
square cavity. In a separate experiment, the width of 
the heater was reduced to 1 cm, located at the center 
of the wall # = 0 . In addition to the frequencies listed in 
Table II , the cavity then resonated at 1420 cps, which 
is V2 times the frequency for two wavelengths along a 
side. This is the compound mode with n~m=^, and 
p=0, i n E q . (3). 

The amplitudes of the resonances are proportional to 
the square of the peak-to-peak voltage Vh applied to 
the heater. This can be seen from the relation dT/dt 
— (dq/dt)Ch~1

y where dq/dt is the rate of heat input, 
and Ch is a heat capacity, dq/dt= (Vh2/^K) exp(ia)t), 
where R is the resistance of the heater, and the oscillator 
frequency is co/2. Integrating with respect to t, we obtain 
for the amplitude of the temperature wave 

TJ=VtQ/b»BCh. (3D 
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TABLE III. Proportionality of TJ to Vh\ and of T2J to TJ2, 
for n — Z. T2J is the amplitude of the coupled wave. The tempera
ture was 1.45°K. 

Heater 
(volts) 

vh 
4 
6 
8 

10 
12.5 
15 
20 
25 
30 

#-wave 
detector 

(voltsXlO"4) 

vh* 
16 
36 
64 

100 
156 
225 
400 
625 
900 

(TJ) 
0.036 
0.080 
0.14 
0.22 
0.36 
0.55 
0.95 
1.30 
1.89 

Average values8 

7YX107 

Vj? 

2.25 
2.22 
2.19 
2.20 
2.31 
2.44 
2.38 
2.08 
2.10 
2.28 

y-wave 
detector 

(voltsXlO"4) 
T '2 

0.303 
0.903 
1.69 
3.57 

(TV) 

0.029 
0.085 
0.170 
0.320 

2VX10- 3 

TJ2 

0.96 
0.94 
1.01 
0.90 
0.95 

a TV for Vh =25 and 30 V have been omitted from the average. 

The variation in measured values of 2 TV for F&=20 V 
is given in Table II, where some numbers are large 
because Q is unexpectedly large. The detector voltage 
has been converted to peak-to-peak amplitude of tem
perature oscillation in Table II. 

The proportionality of TJ to Vh2, and of T2J to 
TJ2 given by Eq. (30), is shown for ̂ = 3 in Table III. 
T2J is the amplitude of the coupled y wave, as it is 
difficult to measure the amplitudes separately in the 
x wave. The deviations of the numbers in the fourth 
and seventh columns of Table III from the average 
values are probably experimental error, except that 
when Vh is larger than 20 V, TJ falls below the values 
predicted by the above relations, due to the increase in 
attenuation at large amplitudes.10 The x and y wave
forms for n~3 and 7^=30 V are shown in Fig. 1. 

VIII. THE SQUARE CAVITY RESONANCES 

The phase of the temperature oscillations of the 
x-wave detector relative to the voltage applied to the 
heater was measured for X/2=a at positions 1, 2, and 3, 
shown in Fig. 2. The phase increased with frequency 
from 37r/4 at position 1, to ir at maximum amplitude, 

FIG. 1. Oscilloscope traces of the x wave (above) and y 
wave (below) in the square cavity when 3\/2=a. The x wave 
shows TJ (at 754 cps) with T2J superimposed. The y wave 
shows only T2J. The oscilloscope sweep speed was 1 msec per 
large division and the sensitivity was 1 V per large division for 
the x wave, and 0.5 V per large division for the y wave. The 
heater voltage was 30 V. 

10 K. R. Atkins and K. H. Hart, Can. J. Phys. 32, 381 (1954). 

250 260 270 280 499.6 512.4 

FIG. 2. Resonances in the square cavity, with sides of length a. 
The frequency increases to the right, and the numbers under
neath are cps. Numbers above the resonances identify frequen
cies at which the phases were measured. The solid line is the 
x wave, and the dashed line is the y-wave. At \/2=a, the y wave 
is at double the frequency of the x wave. The heater voltage was 
15 V. 

to 5x/4 at position 3. The reason for the asymmetry of 
positions 1 and 2 with respect to the maximum ampli
tude is not known. Since the number of half-wavelengths 
is odd, it is clear that the temperature oscillation at the 
wall x~ a should be T out of phase with the heater. 

When n is even, the resonances are doublets, as shown 
in Figs. 2 and 3. The y wave now couples with the 
frequency con, and the 2cow wave was not observed at low 
input voltages. The relative amplitudes of the peaks in 
the doublets have not been interpreted, and are seen 
to differ for different values of n. The phases of both 
the x and y waves, relative to the voltage applied to 
the heater, were measured for X=a, at the positions 
indicated in Fig. 2, and are given in Table IV. The 
following observations are made about the double 
resonances and the phases: 

(1) The frequency separation of the ^-wave doublet 
is less than the separation of the #-wave doublet. 

(2) The x-wave amplitude goes to zero between 
resonances, while the y-wave amplitude does not. 

TABLE IV. Phases of the x- and y-wave detectors, relative to 
the heater voltage, for the double resonances in the square cavity, 
when \=a. 

Position in 
Fig. 2 

#-wave 
phase 

y-wave 
phase 

1 
2 
3 
4 

5 
6 
7 
8 

0 
71-/4 
7r/2 

(Zero 
amplitude) 

7TT/4 
0 

x/4 
7r/2 

7T 

5TT/4 
Sir/2 
7TT/4 

~0 
0 

~o (Zero 
amplitude) 
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TABLE V. Cubical cavity resonances. 

Number of 
wavelengths 
along a side 

(linear modes) 

1/2 
1 

3/2 
2 

5/2 

3 

7/2 

4 

Driven mode 
half-wave 
numbers* 

n 
1 
2 
2 
2 
3 
4 
4 
5 
5 
6 
6 
7 
6 
8 
8 

m 
0 
0 
1 
2 
0 
0 
2 
0 
2 
0 
2 
0 
4 
0 
2 

^ 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

#-wave 
resonant 

frequencies at 
1.45°K (cps) 

246.0 
487.4 
540.0 
683.8 
725.8 
970.2 

1100.2 
1216.8 
1313.6 
1461.6 
1535.8 
1700.8 
1765.0 
1944.4 
2002.0 

Reduced 
frequencyb 

(cps) 

246.0 
243.7 
241.5 
241.8 
241.9 
242.6 
246.0 
243.4 
243.9 
243.6 
242.9 
243.0 
244.7 
243.1 
242.8 

Gavity Q, 
calculated from 

Q 

X 

60 
195 
148 
204 
161 
200 
178 
174 
155 
209 
154 
243 
176 
272 
280 

= C0n/8(d 

y 

283 

138 

2 

108 

167 

Detector phase 
at maximum 
amplitude0 

X 

IT 

0 
7T 

0 
7T 

0 
0 
IT 

7T 

0 
0 
7T 

7T 

0 
0 

y 

IT 

IT 

IV 

TT 

IT 

Z 

TV 

TT 

IT 

7T 

7T 

a Coupled waves are omitted. nf m, and p are the number of half-wavelengths along the x, y, and z axes. Numbers for m and p are interchangeable, 
since y and z are symmetrical in the cavity. 

b Resonant frequency divided by (n^-j-m2 -f-i>2)1/2. 
• Phase is relative to voltage on heater, at x =0. The #-wave phase is taken at x =a. 

(3) For the x wave, the phases for positions 6, 7, and 
8 repeat the phases for positions 1, 2, and 3. 

(4) Between positions 1 and 6, the x-wave phase 
increases by 2T, while the ^-wave phase increases by T. 

(5) At the low-frequency maximum, the x and y 
waves are w out of phase, while at the high-frequency 
3>-wave maximum, they are in phase. 

All five observations listed above would apply to a 
graph of the currents in coupled LC circuits, if one 
circuit only were driven by a generator whose frequency 
was swept through the (double) resonance. This verifies 
that the frequency-dependent parts of the solution of 
the coupled wave equations, discussed in Sec. IV, are 
the analogs of the currents in coupled LC circuits, at 
frequencies close to resonance.8 

From the observed phase relations, we have deduced 
the temperature modes of oscillation at resonance in 
the square cavity. These are given in Fig. 4 for \=a 
and 2\=a; the extension to high frequencies is obvious. 

FIG. 3. Resonances in the square cavity, with sides of length 
a, when n is even. The frequency increases to the right, and the 
numbers underneath are cps. The solid line is the x wave, and 
the dashed line is the y wave. The heater voltage was 15 V. 

These are not compound modes, but rather the super
position of two linear modes which may have different 
amplitudes. The heater is in contact only with the plane 
wave that it generates, and is separated by a boundary 
layer from the coupled wave. The nodal lines shown in 
Fig. 4 are therefore not in contact with the heater. 
Mode 2 is identical with the compound modes for 
n^m and p=0. The compound modes, however, have 
the same amplitude of oscillation on all four walls, and 
the nodal lines do touch the walls, requiring that TV 
of the heater be zero at these points. The configuration 
shown in the lower right-hand corner of Fig. 4 was 

X-o 

K o X o ^ \ / \ / 

£ X - o 

FIG. 4. Coupled-wave modes of the square cavity, when n is 
even. Dashed lines are the temperature nodal lines for the super
imposed linear standing waves. + and 0 indicate positions of 
high- and low-temperature antinodes at a given time; one-half 
cycle later these are interchanged. 



S E C O N D S O U N D I N S Q U A R E A N D C U B I C A L C A V I T I E S A 925 

FIG. 5. Resonances in the cubical cavity, with 
edges of length a. The frequency increases to 
the right, and the numbers underneath are in 
cps. The solid line is the x wave. Mode B and 
mode C are superimposed when \=a. The reso
nance for V2\=a is a compound mode. The 
heater voltage was 15 V. 
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generated as a compound mode with a narrow heater at 
the midpoint of the wall at x=0, as mentioned in 
Sec. VII. 

IX. THE CUBICAL CAVITY RESONANCES 

The first cubical cavity we used was 4 cm along each 
edge, and had resistance strip covering each wall, 
except for a 0.5-mm gap between walls. With this 
cavity, we did not observe any compound resonances. 
The results reported below were obtained with a second 
cubical cavity, 4.10 cm along each edge. The resistance 
strips were 3 cm square, centered in each wall, and 
mounted flush with the 0.55-cm micarta border which 
completed each wall. The distances between walls in 
the x, y, and z directions differed by not more than 0.003 
cm, and the wall x=0 was the heater. The resonances 
are given in Table V, and include a number of compound 
modes. 

When n was an odd integer, and tn—p=0, the x 
wave did not couple with either the y or z directions. 
We observed single resonances, similar to those for 
\/2~a and 3\/2 = a} shown in Fig. 5. The response of 
the y and z detectors was too weak to determine the 
frequency. The phase change of the x wave going 

FIG. 6. Isometric drawing of the coupled-wave mode A in the 
cubical cavity when w = 2. The intersection of the nodal surface 
with each wall forms a square, which has a diagonal length equal 
to X/2. + and 0 indicate positions on the walls of high- and low-
temperature antinodes at a given time; one-half cycle later these 
are interchanged. 

through resonance was similar to that for the corre
sponding wave in the square cavity, and the phase at 
maximum amplitude equalled T at the wall x=a. 

Symmetry conditions are important in determining 
the resonances of the cubical cavity when n is an even 
integer, and m=p=0. There are three coupling con
stants Kxy, Kyz, and Kzx, which can equal either \K\ 
or — | K |. Of the eight possible combinations of K% 
the coupled modes resulting from six combinations 
cancel each other identically, due to symmetry. We are 
left with the two combinations in which all three 
K's have the same sign. These combinations are 
satisfied by only three coupled-wave modes. Using + 
to mean in phase with the heater, — to mean x out of 
phase, and 0 to mean zero amplitude, these modes are: 
+> +> +(mode A); + , 0, —(mode B); and + , —, 
0(mode C). The symbols are in x> y, and z order. 
Modes B and C are coupled waves in two directions 
only, and are identical to mode 1 in Fig. 4. Modes B 
and C are alternate modes, not coupled to each other, 
and not separated by a frequency splitting. 

Mode A for n= 2 is shown in an isometric drawing in 

FIG. 7. Resonances in the modified cubical cavity, with edges 
approximately equal to a. The frequency increases to the right, 
and numbers underneath are in cps. The solid line is the x wave, 
The distance between walls in the y direction is 1% larger than 
in the x direction, and the distance in the z direction is 0.3% 
larger than in the x direction. Mode B and mode C each resonated 
twice, at the frequency for the x direction, and also at the fre
quency for the y, or z direction. The heater voltage was 15 V. 
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Fig. 6. The nodal surface consists of eight hexagons, 
arranged symmetrically in the corners of the cube. 
The intersection of the nodal surface with each wall of 
the cavity forms a square, turned 45° with respect to 
the edges, and having a diagonal length equal to X/2. 
T' changes sign when the nodal surface is crossed. In 
this mode, the temperature oscillation adjacent to the 
heater wall, for 1/8 of the area, is w out of phase with the 
temperature oscillation adjacent to the remainder of the 
heater. For w=4, 6, 8, • • •, the temperature distribu
tions opposite the heater are also divided into areas 
having opposite signs, and therefore mode A was not 
excited with either heater configuration we used. 

We observed modes B and C superimposed. They 
peaked at very nearly the same frequency, as seen for 
\=a in Fig. 5 (the difference in frequency is due to 

INTRODUCTION 

IN this paper we report low-frequency low-field ac 
susceptibility measurements which have been made 

in "swept dc fields." In a previous paper1 it was shown 
that in fixed dc fields the ac susceptibility showed 
complete sample diamagnetism (i.e., — ix) until the 
upper critical field HcZ.2 In contrast to the measure
ments in fixed dc fields, the susceptibility measurements 
in swept dc fields can yield dM/dH of the magnetiza
tion curve up to Hc2 and then the normal metal sus
ceptibility above Hc2. These results are of particular 
significance since they indicate that the small ac field 
has penetrated the superconductor in the mixed state, 
and can thus be used to investigate the bulk properties 
of type II superconductors. The detailed results, which 

*This work was performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 M. Strongin, A. Paskin, D. G. Schweitzer, O. F. Kammerer, 
and P. P. Craig, Phys. Rev. Letters 10, 442 (1964). 

2 Saint-James and P. G. de Gennes, Phys. Letters 7, 306 (1963). 

unequal cavity dimensions). The phase relations at 
maximum amplitude are given in Table V. We also 
show in Fig. 5 an apparent doublet, actually composed 
of single resonances at V2A=# (n=m=2; p=0) and 
3X/2=a. 

In a separate experiment, we decided to see if modes 
B and C could be separated by increasing the distance 
between walls in the y direction by 1%. While assembl
ing the cavity, we inadvertently also increased the 
distance in the z direction by 0.3%. The resulting 
resonances for X=a are shown in Fig. 7. Each mode 
resonated twice, at the frequency for the x direction, and 
also at the frequency for the y or z direction. Unlike the 
doublets in the square cavity, the phase relations are the 
same at each resonant frequency in Fig. 7 (they are as 
listed in Table V). 

depend on the sweep rate, ac amplitude, and the ac 
frequency, are discussed. 

RESULTS 

Magnetization and ac measurements were made on a 
series of cylindrical alloy samples1 subjected to various 
surface treatments. Both the ac and dc fields were 
parallel to the axes of the samples. 

Sensitive ac susceptibility measurements were made 
in which the external dc field was increased and 
decreased at constant rates. Both the real component 
of the ac susceptibility (%')> a n d the imaginary com
ponent (x")> were studied as functions of dc sweep 
speeds.3 By a proper choice of ac frequency, ac ampli
tude and dc sweep rate, %' c a n be made less than 
completely diamagnetic in the region below HcZ and 
above the region of bulk diamagnetism, thereby indi
cating penetration of the ac field into the bulk of the 

3 Under conditions of changing dc fields we define x' and %" 
to be proportional to the real and imaginary parts of the mutual-
inductance-bridge imbalance voltage. 
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Low-frequency low-field ac susceptibility measurements on type I I and certain type I superconductors 
have shown complete diamagnetism, until the transition at some surface upper critical field HC3. In this paper 
we describe measurements in a swept dc field which show that at sufficiently large sweep rates the ac field can 
be made to penetrate the superconductor, and the real part of the ac susceptibility will be dM/dH along the 
magnetization curve, with no observable transition at Hc3. At intermediate sweep rates, the value of the 
susceptibility becomes more diamagnetic and a partial transition is observed at Hc3. For the slowest sweeps 
and highest frequencies, essentially the full diamagnetic-susceptibility characteristic of the point-by-point 
measurements is obtained, along with a transition at Hc3. These results are of particular significance since 
they indicate that an ac field of small amplitude can be made to penetrate a type II superconductor in the 
mixed state, and can therefore be used to investigate the bulk properties. Two models which we have con
sidered to explain our results are briefly discussed. 


